0

Струйные насосы принцип работы

2 Виды струйных насосов

В зависимости от типа перекачиваемой и рабочей жидкости, различают три типа струйных насосов. К ним относятся:

  1. Эжектор. Этой вид струйных насосов применяется только для перекачивания жидкости. Механизм работы заключается в отсасывании жидких веществ. Рабочая жидкость – вода.
  2. Инжектор. Работает по принципу нагнетания жидких веществ. Рабочее вещество – пар.
  3. Элеватор. Используется для понижения температуры теплоносителя за счет смешивания с рабочей жидкостью.

В общем, струйные насосы могут перекачивать жидкость, газ и пар. Могут применяться как жидкоструйные агрегаты (для смешивания и транспортировки рабочей и пассивной жидкости с разницей давления) и аэрлифтовые/эрлифтовые (выполняет функцию подъема жидкостей).

Если насос используется только для перекачки воды, его называют водоструйным. Он может иметь две модификации: вакуумный насос (работающий для использования в лабораториях) и гидроэлеватор (используется для скважин с глубиной до 16 метров).
к меню

2.1 Области использования

Насосы струйные широко применяются в разных сферах промышленности. Причем они могут использоваться как самостоятельные установки или вместе с другими насосными установками. Благодаря простоте конструкции и высокой надежности такие агрегаты незаменимы в работе на реакторах, в аварийных ситуациях с отключением воды, при пожаротушении.

Струйный насос дозатор

Такие конструкции часто применяются в сферах, где работа лопастных насосов не может быть эффективной (например, при перекачивании химически агрессивных веществ), или в системе с лопастными насосами для повышения эффективности их работы.

Кроме этого, эти насосы используются в системах кондиционирования, канализации, для водоотлива и водопонижения.

Одним из важнейших показателей для этой техники является коэффициент подсоса. Эта величина являет собой соотношение расхода рабочей жидкости и перекачиваемого вещества.

Несмотря на простоту конструкции и низкий КПД этот тип механизмов часто применяется в случаях, когда невозможно использовать никакой другой тип насосов. Они легко устанавливаются в трубопроводную систему. Часто выпускаются с изменяемым соплом.

Особенности струйных насосов:

  • высокая надежность;
  • отсутствие необходимости в регулярном техобслуживании;
  • широкая сфера применения;
  • простая конструкция.

При этом:

  • низкий уровень КПД (не более 30%).

к меню

2.2 Струйный насос для цемента

Данная техника широко применяется для транспортировки цемента. При воздействии сжатого воздуха сыпучие материалы транспортируются из бункеров в машины для перевозки.

Струйный насос для цемента

Механизм действия здесь такой: под большим давлением воздуха частицы цемента рассыпаются настолько, что становятся летучими. В результате воздушные потоки могут перемещать их в заданном направлении.

Следует отметить, что процесс такой перекачки цемента проходит под большим давлением, поэтому расстояние подачи этого материала ограничено в пространстве. Например, максимальное расстояние, на которое механизм подает цемент по вертикальной оси – не более 50 метров. По горизонтальной оси это расстояние не может превышать 400 метров.

Для транспортировки цемента, а также других сыпучих материалов можно использовать струйный насос CH 2 с интенсифицирующей камерой. Для перемещения масс по трубопроводам используется сжатый воздух.

Технические характеристики CH 2:

  • производительность: 25 т/ч;
  • масса – 200 кг.
  • подъем в высоту: 25м;
  • протяженность подачи по горизонтали: 150м;
  • давление сжатого воздуха: 0,2-0,3 МПа;
  • расход сжатого воздуха: 3 м³/мин.

к меню

2.3 Бытовые струйные насосы

Данные агрегаты, особенно используемые в быту, имеют невысокие производственные характеристики. Установленный в домашней скважине насос перекачивает только 15-17 литров в секунду. Более профессиональный (и соответственно дорогой) аппарат может перекачать 30-50 литров за секунду.

Бытовой струйный насос

Высота подъема воды бытовым струйным насосом колеблется в пределах 15 метров. Некоторые аппараты могут поднять жидкость на 20 метров, но при этом КПД будет соответственно снижаться. Более мощное и профессиональное оборудование может поднять воду из глубины 50 м.
к меню

2.4 Струйные насосы для нефтяной промышленности

Струйный насос для добычи нефти состоит из таких частей: канал для подведения рабочей жидкости, активное сопло, канал подвода инжектируемой жидкости, камера смещения и диффузор.

В данной сфере промышленности такие агрегаты ценятся за простоту устройства, высокую надежность и функционирование даже в экстремальных условиях, таких как высокая концентрация свободных газов или механических соединений в добываемой массе.

Струйные насосы обеспечивают эффективное применение свободных газов, быстрый приток нефти, свободную регуляцию забойного давления, быстрое остывание погружных электродвигателей и др.
к меню

3 Расчет струйного насоса

Эта процедура являет собой поиск оптимальных параметров, при которых коэффициент полезного действия будет иметь максимальное значение. При этом нужно учесть такие параметры как форма сопла, входной участок пассивного потока, представляющий собой поток, который подсасывается к основному, длина смесительного отсека, расстояние между отсеком и соплом, угол раскрытия и расширения диффузора.

Принцип работы струйного аппарата

Расчеты проводятся по формуле:

Q3= Q1+Q2

Где

  • Q3 – подача в камеру диффузора;
  • Q1 – расходное количество рабочей жидкости;
  • Q2 – расходное количество вещества для эжектирования.

Для того, чтобы рассчитать кoличество жидкости для эжектирования, нужно кoличество литров в секунду жидкости для эжектирования разделить на количество литров в секунду рабочей жидкости.

Также при расчетах стоит учитывать вид насосов и область применения, поскольку они могут иметь дополнительные параметры. Например, для насосов, используемых при пожаротушении, учитываются состояния их рабочего материала – пена, вода, газ – и возможная высота струи, необходимая для эффективного пожаротушения. В нефтяной промышленности берутся во внимание вязкость материала, загазованность среды и т.п.

Устройство и принцип действия струйных насосов

Главная / Статьи / Промышленные насосы /

Пожалуй, среди всех гидравлических машин струйные насосы можно назвать самыми простыми по конструктивному исполнению. Они не имеют движущихся деталей, которые подвержены износу, просты в эксплуатации и ремонте. Струйные насосы относят к классу гидравлических аппаратов.

Упрощенно схему работы струйного насоса можно объяснить так.

Жидкость, пар, или газ под большим давлением подается по трубе, имеющей сопло, в подводящую камеру. Из-за сужения сопла жидкость обладает большей скоростью, следовательно, и кинетической энергией. В подводящей камере давление падает ниже атмосферного, и из питающего трубопровода, соединенного с этой камерой, происходит всасывание. Обе жидкости попадают в следующую камеру, где смешиваются и обмениваются кинетической энергией. Затем перемешавшееся вещество попадает в диффузор насоса, где теряет часть давления, а оттуда — в напорный трубопровод или сборный резервуар.

В зависимости от назначения рабочая и перекачиваемая среда может быть одной и той же (например, в водоструйных насосах), или различной. Струйные насосы относят к т.н. «динамическим насосам». Главным недостатком таких насосов является низкий коэффициент полезного действия — до 30%.

Примечателен тот факт, что до применения электродвигателей в качестве источника механической энергии, т.е. вплоть до 19-го века, струйные насосы широко применялись как генераторы гидравлической энергии.

Струйные насосы почти никогда не соединяют параллельно — чаще последовательно. Выпускаются насосы с изменяемым соплом, что позволяет изменять характеристики в заданных заводом-изготовителем пределах. Иногда струйные аппараты применяют как вспомогательное оборудование для откачки воздуха в центробежных насосах перед их пуском.

Одним из параметров, характеризующим струйные насосы, является коэффициент подсоса, или безразмерный расход. Определяется он как отношение расхода перекачиваемой жидкости к расходу рабочей. Несмотря на кажущуюся простоту и низкий КПД, струйные насосы незаменимы во многих случаях, например, когда необходимо произвести откачку жидкости из каких-либо резервуаров, а применить насосы другой конструкции не представляется возможным. Широкое применение струйные аппараты получили в пищевой промышленности, где одновременно с функцией перекачивания жидкостей ими выполняется функция смешения различных сред. Струйные насосы легко монтируются в систему трубопроводов, они малогабаритны и иногда используются на стороне высокого давления как дополнительные насосы.

Примером такого применения могут служить канализационные насосные станции, в которых струйные аппараты используют для откачки жидкости из пескоуловителей. Еще одним из ярких примеров применения таких аппаратов могут служить системы пожаротушения, в которых подаваемая вода или раствор огнегасящий раствор используется как рабочая жидкость, в то время, как перекачиваемая отбирается из отдельного пожарного резервуара, чаще — пожарного водоема.

Струйные аппараты иногда применяют с резервуаром высокого давления, в котором содержится рабочая среда. В последнее время струйные насосы рассматривают как часть т.н. «тепловых насосов». Замечено, что расширение пара в сопле сопровождается понижением температуры и, наоборот — при подаче среды под большим давлением в сужающийся диффузор последний подвержен нагреванию. Благодаря такому свойству насосы совместно с компрессорами нашли применение в системах кондиционирования и отопления.

>Основы гидравлики

Струйные насосы



Пожалуй, каждый пользовался пульверизатором, встроенным во флакончик с одеколоном или духами. Нажал на головку флакона, и через крохотное отверстие на вас устремляется освежающая струйка смеси воздуха и аромата. Но далеко не все задумывались над тем, что каждый раз, таким образом, используют на практике принцип работы одной из разновидностей гидравлических машин — струйного насоса.

Струйные насосы относятся к типу динамических насосов, так же, как лопастные, электромагнитные, вихревые и некоторые другие конструкции, использующие в своей работе энергию рабочих органов, силы трения или внешние силовые поля. Струйный насос для увеличения кинетической энергии перемещаемого потока использует энергию постороннего потока жидкости, пара или газа.
Этот тип гидравлических машин считается самым простым по конструкции — в них нет движущихся механических частей, подверженных износу и поломке, и если подводимый внешний поток уже обладает кинетической энергией, то вся конструкция может состоять из двух трубок, соединенных особым образом. Некоторое усложнение конструкции вызывает необходимость применения вентиля или (как в примере с пульверизатором) — механизма для ускорения внешнего потока, но и такие элементы не вносят в конструкцию большой сложности.

До изобретения простых в использовании источников энергии, в частности — электрической, струйные насосы были широко распространены в различных машинах и механизмах, как генераторы гидравлической энергии именно благодаря своей простоте и неприхотливости.

***

Упрощенно работу струйного насоса можно объяснить следующим образом: жидкость, пар или газ подается под большим давлением через трубку, оснащенную соплом, в подводящую камеру, соединенную с питающим трубопроводом. В подводящей трубе, за соплом, происходит резкое падение давления — при определенной скорости истечения рабочего вещества (жидкости, газа или пара) в камере образуется вакуум, т. е. давление становится ниже атмосферного, что приводит к всасыванию жидкости из питающего трубопровода. Далее оба компонента (и рабочая среда, и разгоняемая жидкость) перемешиваются, обмениваются кинетической энергией, и попадают в диффузор насоса, а оттуда — в напорный трубопровод или резервуар-сборник.

Как уже указывалось выше, рабочая среда может быть представлена потоком жидкости, обладающим кинетической энергией, либо паром или газообразным веществом, находящимся под давлением. Струйные насосы, использующие для перекачки воды рабочее вещество в виде стороннего водного потока, называют водоструйными насосами.

***

Классификация струйных насосов

Струйные аппараты классифицируются в зависимости от вида рабочего вещества. Если в качестве рабочего вещества используется газ (сжатый воздух или какой-либо другой газ), то струйный насос называют эжектором. Если рабочее вещество пар — насос называют инжектором, если горячая вода — элеватором, если холодная вода — гидроэлеватором.
Таким образом, струйный насос может выполнять функции вентилятора, насоса или компрессора.

***

Достоинства и недостатки струйных насосов

Из изложенного выше можно понять, что к достоинствам этого типа насосов следует отнести простоту конструкции, и, как следствие низкую стоимость изготовления, обслуживания и эксплуатации. Кроме того их выгодно отличает высокая надежность в работе и небольшие габаритные размеры.

Основной недостаток струйных насосов — чрезвычайно низкий КПД (не более 25%) и необходимость подачи к соплу больших объемов рабочего вещества под высоким давлением.

***

Область применения струйных насосов

Благодаря перечисленным выше достоинствам, струйные насосы в настоящее время находят широкое применение во многих отраслях народного хозяйства, в частности в системах теплогазоснабжения, вентиляции и кондиционирования воздуха.
Так, примером использования струйного насоса в конструкции автомобиля может послужить карбюратор бензинового двигателя — в этом механизме реализуется способность струйного насоса придавать энергию струйке бензина энергию, смешивая при этом бензин с воздухом, выполняющем в данной конструкции функцию рабочей среды. Скорость воздушному потоку придает вакуум, создаваемый поршнями цилиндров двигателя при осуществлении цикла всасывания рабочей смеси.

В теплофикационных установках струйные аппараты используют в качестве смесителей на отопительных абонентских вводах (водоструйные элеваторы), в вентиляционных установках — для создания непрерывного потока воздуха через каналы и помещения (эжекторы), а также в холодильной технике — в качестве агрегатов холодильных установок.
Широко применяют водоструйные установки для подъема воды из глубоких колодцев и скважин, в канализации — для удаления осадка из песко- илосборников.

***



Характеристики и параметры струйных насосов

Одним из параметров, характеризующих струйный насос, является коэффициент инжекции α (коэффициент эжекции, коэффициент подсоса), который определяется, как отношение подачи насоса к расходу рабочей жидкости. При этом полная подача насоса QO состоит из двух составляющих — расхода рабочей жидкости Q1, подаваемой в сопло насоса, и расхода подсасываемой жидкости Q2.
Тогда коэффициент инжекции (подсоса) может быть определен по формуле:

α = QO/Q1 = (Q1 + Q2)/Q1.

Отношение высоты подъема перекачиваемой жидкости H0 к рабочему напору H1 называется коэффициентом напора струйного насоса β:

β = H0/H1.

Коэффициент полезного действия струйного насоса определяется по формуле:

η = NП/NЗ = QOH0/Q1H1 = αβ,

где:
NП = QOH0γ — полезная мощность струйного насоса;
N1 = Q1H1γ — затраченная мощность.
α и β — рассмотренные выше коэффициенты.

Как уже упоминалось выше, КПД струйных насосов невелик, и обычно лежит в пределах 0,15…0,25.

Приближенно расход рабочей жидкости, который необходимо подать к соплу струйного насоса, можно определить по формуле:

Принцип работы струйного насоса

Принцип работы струйного насоса основан на перемещении среды различного агрегатного состояния по трубопроводу с вмонтированным в него соплом. Такое сопло изготавливается суженным. Благодаря сужению скорость жидкости при движении увеличивается.

Схема работы струйного насоса выглядит следующим образом.

Поток жидкости проходит через сопло 1. Сечение сопла по длине уменьшается, поэтому постепенно увеличивается скорость потока. Кинетическая энергия потока при этом возрастает, достигая наивысшего значения на выходе его из сопла в камеру 2.

Повышение кинетической энергии обуславливает понижение давления в камере 2. Под влиянием разности атмосферного давления и давления в камере 2 жидкость поднимается от уровня 3 в камеру 2, где она захватывается струёй рабочей жидкости, вытекающей с большой скоростью из сопла 1.

Смесь рабочей и перемещаемой жидкостей поступает в расширяющийся патрубок 4 и далее по трубопроводу в бак на высоту Нг.

Объективно, струйный насос сложно отнести к нагнетательным устройствам в классическом понимании, так как он не обеспечивает избыточный напор на стороне нагнетания потока. Цилиндрический насадок как струйный насос в практике не используется, что объясняется большими потерями энергии в нем. Конструктивная схема струйного компрессора, применяемого в промышленности выглядит следующим образом

Рабочая жидкость вытекает с высокой скоростью через сопло 1 в приемную камеру 2. Струя рабочей жидкости в приемной камере соприкасается с перемещаемой жидкостью, поступающей по трубе 3. Благодаря трению и импульсному обмену на поверхности струи в приемной камере происходит захватывание и перемещение жидкости, поступающей по трубе 3 в камеру смешения 4 и далее в конический диффузор 5.

В камере смешения происходит обмен импульсами между рабочей и перемещаемой жидкостями. В диффузоре протекает процесс превращения кинетической энергии в потенциальную. Из диффузора жидкость поступает в напорный трубопровод.

В промышленности распространены два типа струйных аппаратов: водоструйные и пароструйные компрессоры. В водоструйных насосах рабочей жидкостью является вода, а в пароструйных – пар. Способ работы водоструйных насосов и пароструйных компрессоров по существу одинаков; в рабочем процессе их имеется различие вследствие разницы в свойствах рабочих жидкостей.

Основными параметрами струйного насоса являются расход рабочей жидкости Gр, расход перемещаемой насосом жидкости Gн (подача насоса), давление рабочей жидкости Рр, давление перемещаемой жидкости Рн перед насосом и давление смешанной жидкости за насосом Рс.

Коэффициент полезного действия струйных насосов низок, но простота конструкции их и отсутствие движущихся частей привели к их широкому применению.

Очень часто принципиальные схемы включения струйных насосов компонуются в последовательное соединение нескольких агрегатов. В таком случае насосы конструируются с разными диаметрами сопла, что позволяет регулировать характеристику нагнетаемого потока в рабочем диапазоне включенных последовательно агрегатов.

Устройство струйного насоса

Конструкция струйного насоса не включает в себя движущихся частей. В зависимости от назначения в его состав входит:
сопло агрегата;
камера приема;
камера смешения;
выходной диффузор;
насадки для подачи инжектируемой и рабочей жидкостей(двухфазного потока).

Разнообразные модели агрегатов данного типа в зависимости от области своего применения оборудуются разными по характеристикам суживающимися насадками – соплами. Выбор сопла в каждом конкретном случае зависит от вида перекачиваемой среды и ее гидравлических особенностей.

Преимущества и недостатки струйных насосов

Как и у каждого оборудования у струйных насосов есть свои преимущества и свои недостатки. Попробуем обобщить основные критерии по каждой из категорий.

К основным достоинствам струйных насосов относятся:
высокая надежность и возможность продолжительной эксплуатации без ремонта;
отсутствует необходимость осуществлять регулярное техническое обслуживание;
низкая чувствительность к химически агрессивным потокам;
простота конструкции и простота монтажа;
обширная область использования (в быту и промышленности).

Конечно, большинство перечисленных преимуществ данного типа насосов перед другими исходит из тог, что в них отсутствуют движущиеся составные элементы. Струйные насосы выделяются относительно небольшими габаритными размерами и массой. Они малотребовательны к расходам на эксплуатацию, что является очень весомым фактором их применения.

Основными недостатками этого типа агрегатов являются:
очень низкий коэффициент полезного действия насоса – не более 30%;
необходимость подавать большие объемы жидкости на сопло.

С помощью струйных устройств сжимают газообразные вещества, создают давление ниже атмосферного — вакуум, перекачивают жидкие среды, транспортируют твердые сыпучие вещества, смешивают различного рода газы и жидкости.

Видеоматериалы

Достаточно широкого применения струйные насосные устройства нашли в пожарной технике, в качестве смесителей, для получения пены для тушения пожаров.

В энергетических паротурбинных установках струйные аппараты являются неотъемлемой частью конструкции для удаления пара из уплотнений вала турбоагрегата.

В химической индустрии данные насосы служат для перекачкия кислотных и щелочных растворов.

В бытовом обиходе струйный насос часто используется в водяных скважинах, а также для перекачивания канализационных стоков с песком и илом.

В дополнение к статье «Струйные насосы: устройство и принцип работы.» Вам может быть интересно:

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *