0

Расчет капельного орошения

Содержание

Капельный полив своими руками

Для чего нужна система капельного орошения? Прежде всего, чтобы освободить хозяина приусадебного участка от шланга, отнимающего много времени и сил. Шланг порой не дотягивается до нужного места, запутывается или сгибается, его приходится перетаскивать, повреждая при этом растения…. Всех этих мучений помогает избежать грамотно организованная система капельного полива, которую можно использовать в теплицах, на грядках в открытом грунте, небольшом газоне, в цветниках.

Осуществить монтаж капельного орошения можно своими руками, не обладая особыми техническими навыками: в специализированных магазинах имеются в продаже все необходимые комплектующие. При самостоятельном изготовлении полив будет отвечать вашим индивидуальным требованиям с учетом мельчайших деталей.

Капельный полив

Для стандартных решений (полива теплиц, парников или грядок небольшого размера) в продаже имеются готовые наборы («АкваДуся», «Жук», «Урожай», «Водомерка и многие другие) с автоматическим управлением или без него. Обзор таких систем — в нашей специальной статье.

Как самому сделать капельный полив? Существует несколько вариантов его устройства на приусадебном участке. Для правильного подбора оборудования следуйте нашим рекомендациям.

Полив с помощью готовых комплектующих

1. Прежде всего определяемся с источником водозабора. Это может быть водопровод, колодец или скважина. Открытый водоем для организации капельного полива не подойдет, так как вода в нем будет излишне загрязненной, и оборудование быстро выйдет из строя.

Если планируется подключить систему напрямую к водопроводу, то нет необходимости приобретать насос, однако из-за нестабильного напора воды может понадобиться редуктор давления.

Если источником водозабора будет скважина или колодец, то воду из него сначала накачивают в накопительную емкость (бочку, еврокуб). Объем емкости должен соответствовать объему воды, затраченному на один полив. Он рассчитывается по следующей формуле:

Количество растений * расход воды на одно растение в час * время полива

Например:

60 кустов клубники * 2 л/час * 2 часа = 240 литров необходимо на один полив.

Накопительная емкость

От накопительной емкости вода по магистральному трубопроводу поступает к капельной ленте или капельницам.

2. Что выбрать: капельную ленту или капельную трубку с капельницами?

Полив капельной лентой больше рассчитан на однородные посадки растений, например, картофеля, свеклы, зелени, лука, чеснока. Может использоваться для орошения узкого или сложной формы газона.

Капельная лента представляет собой плоскую тонкостенную трубку, внутри которой находятся специальные встроенные приспособления для подачи воды. От высокого нерегулируемого давления лента может разорваться, поэтому если система полива подсоединяется напрямую к водопроводу, необходимо приобрести специальный редуктор, регулирующий давление до 1 бар. Максимальная длина грядки, на которую можно положить капельную ленту – 100 метров.

Существует несколько видов лент:

1. Щелевая.

В такой ленте по всей длине встроен лабиринт, распределяющий давление воды равномерно. На определенных расстояниях в лабиринте сделаны отверстия водовыпуска. Щелевая лента склонна к засорению, поэтому при ее использовании в систему капельного полива должен устанавливаться хороший фильтр.

Щелевая лента для капельного полива

2. Эмиттерная.

Эмиттеры – специальные плоские капельницы, оснащенные сложной системой ходов (лабиринтом), встроенные внутрь ленты и осуществляющие подачу воды к растению. Располагаться друг от друга эмиттеры могут на разном расстоянии – 10, 15, 20, 30 см. Чем расстояние между эмиттерами меньше – тем выше цена ленты. Выбор расстояния зависит от вида поливаемых культур. Эмиттерная лента более надежная, чем щелевая, и цена ее в целом выше.

Эмиттерная лента

Важный параметр – толщина ленты, от которой зависит ее прочность. Самая тонкая лента будет служить в открытом грунте всего один сезон, более всего она подходит для теплиц.

Минусы и плюсы капельной ленты:

Минусы:

  • требуется установка качественных фильтров перед подачей воды к ленте
  • небольшой срок службы
  • при высоком давлении воды может рваться

Плюсы:

  • невысокая цена
  • полив может работать от емкости без насоса (самотеком)

Капельная трубка — более жесткая, изготавливается из ПНД и предназначена для самостоятельной установки наружных капельниц, выпускается без отверстий. Соединители, тройники и ремонтные муфты для капельных лент и трубок необходимы разные, так как диаметр ленты измеряется внутри, а трубки – снаружи. В отличие от обычной ПНД-трубы толщина стенки капельной трубки меньше (от 0,8 до 1,2 мм) и ее материал обладает устойчивостью к ультрафиолету. Трубка выдерживает давление воды до 6 бар.

Капельная трубка

Наружные капельницы применяют при нерегулярных посадках, для полива кустарников, деревьев, на цветочных клумбах: там, где важно полить каждый кустик растения индивидуально. Для работы капельниц необходимо высокое давление воды.

Подключаются капельницы либо через тонкие специальные шланги, либо напрямую к капельной трубке – в этом случае принцип их действия аналогичен капельной ленте с встроенными капельницами.

Наружные капельницы

В некоторых капельницах предусмотрено регулирование объема выливаемой воды, такие капельницы называются регулируемыми.

Виды капельниц:

Компенсированные

Обеспечивают равномерный полив при большой длине ленты, а также на участках, имеющих уклон. Хорошо работают только при определенном давлении воды, поэтому не используются при поливе из емкости «самотеком». Менее чувствительны к загрязненной мелкими частицами воде.

Некомпенсированные

Такие капельницы используются на ровных участках без уклона, при небольшой длине капельной ленты. Подходят для полива из емкости, так как могут работать при низком давлении воды.

Капельницы-колышки используют для точечного полива, так как устанавливаются они непосредственно в прикорневой зоне растения.

Капельница-колышек

Плюсы и минусы капельниц

Плюсы:

  • шаг установки выбирается самостоятельно
  • объем водовыпуска может регулироваться

Минусы:

  • более высокая цена
  • индивидуальная настройка регулируемых капельниц и их прочистка отнимает много времени

Вывод: если вам необходимо организовать полив таких культур, как лук, картофель, свекла, морковь, чеснок, редис, газонная трава, и источником поливной воды служит накопительная емкость – выбирайте капельную ленту. При наличии редуктора давления капельную ленту можно использовать и при поливе от водопровода.

Если капельный полив необходим регулируемый, индивидуальный для каждого растения (цветы, кустарники, деревья, клубника, помидоры, огурцы, баклажаны), а источник водоснабжения обеспечивает достаточное рабочее давление воды – выбирайте капельницы с подводящими микрошлангами.

Индивидуальный полив растений с помощью капельниц-колышков с подводящими микрошлангами

Посмотрите видео, иллюстрирующее варианты применения капельного полива, на примере одной из готовых систем:

3. Приобретаем необходимые комплектующие.

1. Насос. Необходим для подачи воды из скважины или колодца в накопительную емкость или напрямую в магистральный шланг системы при установке редуктора давления.

2. Накопительная емкость. Для полива «самотеком» при отсутствии подключения к водопроводу емкость необходимо поднять на высоту от 50 см до 2 метров для создания необходимого рабочего давления воды. Если нет возможности установить бочку на необходимой высоте, можно использовать погружной насос, подключив к нему автоматику для регулировки системы полива. В этом случае важно соблюсти все параметры давления воды в системе и следить за уровнем воды, например, с помощью прозрачного шланга, чтобы обезопасить насос от сухого хода. К емкости с помощью специальной муфты присоединяется магистральный шланг.

Муфта для подсоединения магистрального шланга к накопительной емкости

3. Шланги. Для подсоединения к источнику воды необходим магистральный шланг или труба диаметром 13,16 или 19 мм.

Магистральный шланг

К этому шлангу подсоединяются капельные ленты или трубки меньшего диаметра. Для капельниц могут понадобиться подводящие тонкие шланги диаметром 4-7 мм.

4. Редуктор давления. Помогает регулировать и поддерживать необходимое давление для правильной работы водовыпусков.

Редукторы до 1бар – применяются для капельной ленты.

Редукторы от 1 до 2.8 бар — используются для полива капельной трубкой с наружными капельницами.

5. Фильтр для капельного полива. Применяется для очистки воды от загрязнений, необходим при заборе воды из скважины или колодца.

Фильтр для системы капельного полива

6. Капельная лента, капельная трубка, капельницы, микротрубки. Выбор этих комплектующих зависит от назначения и целей капельного полива.

Капельная лента с внешними капельницами

7. Фитинги. Необходимы для различных соединений:

  • стартконнекторы – с их помощью капельная лента крепится к центральной магистрали
  • краны — совмещают функции стратконнектора и крана, обеспечивают позонный полив
  • ремонтные муфты – нужны для ремонта ленты при ее разрыве
  • углы и тройники – пригодятся для создания разветвлений и поворотов
  • стойки – прижимают ленту к земле, защищая ее от смещения при порывах ветра

Ремонтная муфта

8. Заглушки. Необходимы для герметизации конца ленты или шланга.

Заглушка

9. Монтажные инструменты.

Прокалыватель или пробойник необходим для проделывания отверстий в «слепом» шланге для подсоединения капельниц.

10. Автоматика для управления поливом.

Таймеры (механические или электронные), контроллеры (работающие от сети или на батарейках), метеодатчики, электромагнитные клапаны. С помощью таймеров и контроллеров устанавливается регулярность и длительность полива, полностью автоматизируется его процесс. Правильная работа системы зависит от качества оборудования, поэтому на автоматике не стоит экономить. Устанавливая автоматическое управление поливом, не забудьте про датчик дождя, который будет отключать систему на время осадков.

При наличии нескольких разнородных зон полива вместе с контроллером необходимо приобрести электромагнитные клапаны, которые соединяют магистральную линию и линии капельного полива. Программа будет включать сначала одну зону для полива через электромагнитный клапан, а потом другую.

Таймер для системы капельного полива

Система капельного полива своими руками: простейший вариант монтажа с использованием накопительной емкости.

  1. К источнику водозабора подключаем насос для наполнения емкости водой.
  2. Емкость устанавливаем на высоте 0,5-2 метра от земли, к ней на расстоянии 10-15 см от дна подсоединяем магистральный шланг с краном и фильтром.
  3. Прокладываем магистральный шланг перпендикулярно лентам капельного полива, на его конце устанавливаем заглушку.
  4. В магистральном шланге сверлом просверливаем отверстия по количеству линий капельного полива, линии присоединяем с помощью стартконнекторов или кранов.
  5. Раскладываем капельную ленту или трубку водовыпусками вверх.
  6. Если необходимо к трубке присоединить капельницы – проделываем в ней отверстия с помощью специального пробойника, вставляем подводящие микрошланги и к ним подсоединяем капельницы.
  7. Конец лент закрываем заглушками, предварительно прогнав через систему воду, чтобы из нее вышел весь воздух.

Схема монтажа капельного полива с использованием автоматического контроллера

Капельный полив из пластиковых бутылок

Простейший полив для теплицы можно организовать и без финансовых затрат на специальные комплектующие, с помощью подручных средств.

Очень просто можно сделать капельный полив из пластиковых бутылок своими руками, для которого подойдет тара из-под различных напитков.

Возле куста растения, нуждающегося в поливе, вкапывается пластиковая бутылка, пробкой вверх. В ее донышке проделывают несколько отверстий, через которые в почву будет медленно поступать вода. Через горлышко емкость пополняют водой, потом пробку слегка прикручивают, чтобы уменьшить испарение. К недостаткам такого способа полива можно отнести быстрое засорение отверстий и непригодность его для тяжелых грунтов, которые плохо впитывают воду.

Пластиковые бутылки можно не вкапывать в землю, а подвесить их над растениями на проволоке горлышком вниз на расстоянии 5-10 см от земли. В горлышке проделывается отверстие, в которое вставляется пустой обрезанный стержень от шариковой ручки, через который вода поступает к корням растения.

Если проделать в днище отверстие и вставить в него медицинскую капельницу для внутривенных инфузий, то, во-первых, подачу воды можно будет регулировать, а во-вторых, попадать она будет точно под корень растения. Отверстие можно промазать герметиком, чтобы вода не подтекала.

Капельный полив с помощью пластиковой бутылки

Методика расчета по капельному поливу. Методика расчета и эксплуатация систем капельного орошения

Новизна, приоритеты и перспективы овощеводства О преимуществах использования капельного орошения в сельском хозяйстве известно давно. На Украине и в России капельное орошение начали использовать более 20 лет назад. Сегодня наблюдается тенденция увеличения площадей под капельным орошением. Основные термины и определения Капельное орошение применяется в овощеводстве в промышленных масштабах на юге Украины с 1997 года. Положительные результаты на всех сельскохозяйственных культурах и на всех типах почв способствовали динамичному развитию этого способа орошения. Успех в применении капельного орошения радикально изменил современный подход к комплексу вода — почва — растение, на фоне дозированного режима питания, и способствовал новому подходу в области орошения вообще.

Как любая система, капельное орошение имеет свою терминологию, которую необходимо знать:

  • Источник водоснабжения — канал, бассейн или скважина, откуда производится забор воды.
  • Насосная станция и водозабор предназначены для забора воды из источника.
  • Фильтрационная станция предназначена для доведения качества воды до установленных параметров. В зависимости от наличия в воде определенных примесей и величины орошаемой площади, фильтрационная станция может включать сетчатые, дисковые, гравийные, гидроциклонные фильтры или их комбинации.
  • Узел внесения удобрений — предназначен для дозированного внесения, совместно с поливной водой, удобрений и СЗР. Может состоять из удобрительной головки и инжектора или дозатрона, а также емкости для приготовления раствора удобрений.
  • Контроллер — устройство для автоматического контроля и управления работой системы капельного орошения.
  • Регулятор давления — устройство для поддержания постоянного давления в системе, согласно паспортных данных.
  • Оросительные трубки или ленты — капельные линии, укладываемые параллельно друг другу, согласно технологии, и соединенные с поперечной магистралью трубопровода.
  • Эмиттеры — капельные увлажнители (капельницы) скрепленные с трубопроводом или составляющие с ним единое целое, в зависимости от конструкции. Их назначение — дозированный выпуск воды из трубопровода в небольших количествах.

Классификация и типы оросительных трубок

Трубки классифицируются:

  • По типу трубки лента или шланги.
  • По типу капельницы — с жесткой капельницей и мягкой. Компенсированные и не компенсированные.
  • По жесткости — мягкие (тонкие, однолетние) и жесткие (прочные).

Комплектация систем капельного орошения. Основные составляющие системы капельного орошения.

В настоящее время базовая комплектация системы капельного орошения состоит из: Источника водоснабжения. Узла подготовки и внесения удобрений. Фильтростанции. Магистральных трубопроводов. Регуляторов давления. Разводящих трубопроводов. Соединительной фурнитуры. Запорной фурнитуры.

Дополнительно система может содержать узлы автоматического контроля и управления системой, а также учета расхода воды.

Фильтрационная станция — один из важнейших элементов системы. В зависимости от наличия в поливной воде определенных примесей и величины орошаемой площади, фильтрационная станция может включать сетчатые, дисковые, гравийные и гидроциклонные фильтры. Сетчатые фильтры устанавливаются не только с очистительной целью, но и с предупредительной, после гравийного. Состоят из корпуса и фильтрующего элемента в виде мелкоячеистой сетки. Применяют для фильтрования воды при невысоком содержании неорганических частиц. Степень очистки воды зависит от размеров ячейки фильтрующей сетки, а пропускная способность от площади. При засорении фильтрующий элемент промывается обратным потоком воды. Дисковые фильтры разработаны для более глубокого фильтрования. Состоят из корпуса и фильтрующего элемента в виде набора плотно сжатых тонких дисков с радиальными канавками. Они сочетают надежность и наименьшую себестоимость обслуживания. Используются для удаления неорганических и органических частиц. Обычно используются при заборе воды из скважин. При засорении могут промываться обратным потоком воды. Гравийные фильтры используются для удаления органических и неорганических частиц. Применяемый в качестве фильтрующего элемента песок, за счет своей высокой удельной фильтрационной поверхности, позволяет удерживать большие количества взвешенных частиц. Используются при заборе воды из открытых водоемов. Промывка производится обратным потоком воды. Засыпаемая гравийно-песчаная смесь используется двух фракций: крупная (1,2-2,4 мм) засыпается снизу, а мелкая (0,5-0,8) засыпается сверху. Гидроциклоны используются для разделения и удаления тяжелых частиц из воды (в основном песка). Используются при большом загрязнении воды тяжелыми частицами, для предварительной очистки.

Методика расчета систем капельного орошения

Определение потребности в воде, на заданную площадь, и количества оросительной трубки

Агрономия не является точной наукой, как, например математика. И не смотря на то, что, на протяжении нескольких веков в этой области проводились масштабные исследования, получен значительный объем ин формации о влиянии орошения, удобрений и т. д. на развитие растений, мы не можем говорить о полном прогнозировании и планировании процессов в с/х производстве. Тем не менее, даже при отсутствии четких зависимостей, мы можем, исходя из имеющейся информации, оказывать значительное влияние на урожайность с/х культур путем корректировки определенных факторов. Одним из таких факторов является орошение. А если речь идет об орошении в овощеводстве, то на сегодняшний день можно с уверенностью говорить о том, что наиболее эффективным является капельное орошение.

Выбрав на основе почвенных, водных, маркетинговых исследований набор культур, их площади и фирму-производителя оборудования переходят непосредственно к расчету самой системы, используя следующий порядок проектирования:

  • Предварительный расчет водопотребления.
  • Расчет количества оросительной трубки на участок, согласно схеме посадки.
  • Деление участка на поливные блоки (учитывается длина рядов, мощность насоса, дебет скважины).
  • Подбор фильтростанции (учитывается расход воды по блокам, желаемое время полива участка).
  • Подбор материалов магистральных и разводящих трубопроводов.

Где: Q — пропускная способность фильтростанции, м3/ч; S — планируемая площадь орошения, га; Т — планируемое время работы системы в сутки, 16-20 ч.

Если источник водоснабжения позволяет расчетный расход воды, следует переходить к следующему этапу расчета проекта. Расчет количества оросительной трубки ведется, с учетом перечня возделываемых культур.

Для каждой культуры, с учетом возделываемой площади и схемы посадки, рассчитывается потребность в оросительной трубке:

Где: Lt — потребность в оросительной трубке, м; Sк — площадь возделываемой культуры; L — расстояние между оросительными трубками (схема посадки).

Разбивка участка на поливочные блоки или зоны.

При разбивке участка на поливочные блоки необходимо знать, что максимальная пропускная способность магистрального рукава LAY FLAT 4″ составляет 80м3/ч, а пропускная способность — LAY FLAT 3″ — 40м3/ч. В особых случаях возможно повышение пропускной способности на 10-15%. Следовательно, водопотребление одного поливного блока, не должно превышать пропускной возможности трубопровода. Поскольку, в качестве отводного трубопровода используются, помимо гибких рукавов, и жесткие трубопроводы из ПНД, то за контрольные показатели для разбивки на блоки, следует брать значения пропускной способности трубопроводов (табл. 1).

Таблица 1. Максимальная пропускная способность трубопроводов. Пример.

КультураТоматы
Расстояние между оросительными лентами1,8 м
Магистральный трубопровод LAY FLAT — 4″
Расстояние между эмиттерами0,3 м
Расход воды на один эмиттер1,1 л/ч

Зависимость для расчета размеров поливочного блока, Га:

где: Qt — Пропускная способность разводного трубопровода, м3/ч;

L — Расстояние между оросительными трубками (схема посадки), м;

х — Расстояние между эмиттерами оросительной трубки, м.

q — норма вылива одного эмиттера л/ч.

Далее определяется предварительное количество поливочных блоков. Для этого общую площадь возделываемой культуры делят на расчетную площадь блока и округляют в сторону увеличения. При невозможности размещения или экономической нецелесообразности расчетного количества поливочных блоков идут на увеличение их количества.

Для определения расхода воды на гектар пользуются следующей зависимостью, м3/ч:

Следующий этап — определение геометрических размеров поливочных блоков. Магистральный трубопровод, может проходить через поливной блок по середине (или со смещением), или по границе поливного блока. Более выгодно, в большинстве случаев, разводной трубопровод располагать по середине орошаемого блока с двусторонней разводкой оросительных трубок, из-за высокой стоимости трубопровода. Однако, нельзя забывать, что у капельной ленты есть ограничение максимальной длины. В отдельных случаях экономически более целесообразно одностороннее расположение оросительных трубок относительно разводного трубопровода при неудобной конфигурации поля и высоких затратах на магистральные трубопроводы.

Второй фактор, влияющий на геометрические размеры поливных блоков — это техническая характеристика оросительной трубки. Можно задавать 5-15% неравномерностью полива. Для самой массовой, оросительной трубки (диаметром 16 мм, норме вылива на эмиттер 1,2 л/ч и расстоянием между эмиттерами 0,3 м) при неравномерности 10% максимальная длина поливных линий составляет около 150 м. Таким образом, необходимо изучить технические характеристики предлагаемой оросительной трубки. Разбивая поле на поливочные блоки, экономически целесообразно использовать поливочные линии длиной 70-90% от максимальной. Определив длину поливочных блоков, рассчитывают длины магистральных трубопроводов.

Следует не допускать выращивания в одном блоке разных культур, особенно с разными нормами полива и нормами удобрений. Если возникает такая необходимость, используют соединительные фитинги с кранами. Также нельзя использовать различные схемы посадки с разных сторон одного разводного трубопровода.

Уточнение потребности в воде и составление схемы полива

После определения количества и размеров поливочных блоков уточняют расход воды на каждый поливочный блок, м3/ч:

где Wi — расход воды конкретного поливочного блока;

W — расход воды на гектар используемой схемы посадки;

Sб — площадь конкретного поливочного блока.

Следующий этап составление схемы полива. Для этого максимальная поливная норма (60-70 м3/га) делится на гектарный расход воды (м3/га в час), используемой схемы посадки и определяется максимальное время полива конкретного блока. Для рассматриваемого примера (томаты) гектарный расход воды (за один час работы системы) составляет 26 м3, а максимальное время полива (при максимальной дневной норме 70 м3/га) около 3 часов.

Выбор установки фильтростанции

При выборе фильтростанции необходимо учитывать источник водоснабжения (открытый водоем или скважина), степень загрязненности воды и вид загрязнителя, часовую потребность в воде (пропускную способность), а также производительность насосной станции и количество других потребителей. Следует иметь ввиду наличия необходимости проведения анализов воды на химический состав, наличие биологических и механических загрязнителей с целью определения пригодности для орошения и подбора фильтростанции. При использовании поливной воды из открытых водоемов, следовательно, имеющей большое количество биологических загрязнителей, необходимо включать в состав фильтростанции песчано-гравийный фильтр, а при большом количестве взвешенных песчаных частиц целесообразно использование гидроциклонов. Также, помимо песчано-гравийного, в состав фильтростанции (при заборе воды с открытых водоемов) входит страхующий сетчатый или дисковый фильтр.

Если используется вода со скважины то, обычно достаточно одного дискового или сетчатого фильтра. При большом количестве взвешенных песчаных частиц целесообразно использование гидроциклонов. Определившись с типом фильтростанции, на основании анализа источника водоснабжения, переходят к выбору типа фильтров и расчета их количества.

Перед выбором пропускной способности фильтростанции, необходимо уточнить производительность (при наличии) насосной станции и наличие других потребителей воды. При избыточной мощности насосной станции возможна ситуация когда дополнительные затраты на подачу воды превысят стоимость дополнительных фильтров. Поэтому необходимо также экономическое обоснование пропускной способности фильтростанции.

Определившись с максимально необходимой пропускной способностью фильтростанции и ее типом, начинают комплектацию. По пропускной способности подбирают марку фильтра и их количество. Также выбирается удобрительный узел. Удобрительный узел обычно состоит из задвижки, инжектора и соединительно-запорной арматуры. В зависимости от пропускной способности фильтростанции инжектор может быть от 0,5″ до 1,5″.

Расчет магистральных трубопроводов

Гидравлический расчет водопроводной сети заключается в определении диаметров трубопроводов по известному расходу воды и потерь напора на всех ее участках, а также определения минимального давления на входе системы.

Диаметр трубопроводов D, определяется по формуле, м:

где: 1,13— коэффициент, получаемый при переходе от живого сечения потока к диаметру трубопровода;

Wi — Расчетный поток воды, протекающий по данному участку трубопровода, м3/ч;

V — Экономически целесообразная скорость движения воды в трубопроводе — 0,9…1,9 м/с.

Полученные фактические значения диаметров труб округляем до ближайшего большего стандартного значения.

После определения диаметров трубопроводов определяем фактическую скорость движения воды в трубопроводах Vf, м/с:

w — площадь живого сечения трубопровода м2;

Df — принятый диаметр трубопровода, м.

Потери напора hn, м (примерно 0,1 бар), определяются по формуле:

где: А — удельное сопротивление труб, (с/м2);

Lт — расчетная длина трубопровода, м;

b — поправочный коэффициент.

Порядок расчета трубопроводов:

  • Определяются диаметры трубопроводов по расходу воды и скорости потока для каждого участка.
  • Определяются потери напора по участкам.
  • Определяется максимальная потеря напора.
  • Определяется минимальное входное давление.
  • Сравниваются возможности источника водоснабжения с потребностями системы.

Порядок и основные требования к монтажу

На участке, предназначенном для размещения системы капельного орошения, предварительно проводится предпосевная обработка почвы и, при необходимости, внесение почвенных гербицидов. Монтаж производится в следующей последовательности:

  • Монтируется фильтростанции и магистральные трубопроводы, согласно проекту.
  • Производится посев и укладка оросительной трубки при сеяной культуре, или укладка трубки при рассадной культуре (производится вручную или с помощью укладчиков расположенных на раме сеялки или культиватора).
  • Укладывается распределительный трубопровод и подсоединяется к магистральному трубопроводу.
  • Оросительные трубки, через фитинги, подсоединяются к распределительному трубопроводу. Для этого в трубопроводе, с помощью перфоратора, делаются отверстия под фитинг.
  • Промывают систему водой в течение 10-15 минут. Для этого в начале промывают фильтростанцию до появления чистой воды, а затем промывают оросительные трубки.
  • По окончании промывки закрывают концы оросительных трубок.
  • Производят регулировку давления согласно паспортным данным.

Эксплуатация системы

Стоимость систем капельного орошения довольно высокая, поэтому очень важно правильно спланировать все работы по эксплуатации системы. Если планирование будет осуществлено неверно, что повлечет за собой неправильную эксплуатацию системы, затраты не окупятся, так как прибыль будет низкой. Выращивание овощей на капельном орошении предполагает применение самых передовых технологий, поэтому получение высоких урожаев возможно только при обязательном выполнении всех агротехнических мероприятий по защите растений, внесению удобрений, уходу за растениями. Система капельного орошения не защищена от неправильной обработки почвы и ухода за растениями, поэтому все работы необходимо выполнять своевременно и качественно.

Качество каждой из систем зависит от толщины (плотности) трубки или ленты. Трубка или лента с высокой плотностью может использоваться несколько лет. Срок использования наиболее тонкой ленты составляет один год. Лента с наименьшей плотностью закладывается в почву на глубину 5 см. Более плотная трубка или лента может использоваться на поверхности почвы. При эксплуатации самой тонкой ленты важно проследить, чтобы она была уложена в почву точно на глубину 5 см. К сожалению, ещё нет техники для точной укладки ленты в почву, различия в глубине составляют ± 5 см. Если лента расположена слишком глубоко, есть риск изменения давления и объема воды в ленте, так как после сильных дождей почва существенно уплотняется. Так же будет трудно убрать ленту из почвы после окончания сезона, если она находится слишком глубоко в почве.

Если лента с наименьшей плотностью расположена слишком мелко, могут возникнуть проблемы с почвенными вредителями (проволочник, медведка). Очень важно сразу же после укладки ленты внести в почву с поливной водой инсектициды в следующей пропорции:

Децис форте — 0,1 л/га.

Базудин — 1,5 л/га.

Золон — 1,5л/га.

К сожалению достаточно эффективных препаратов по борьбе с почвенными вредителями ещё нет. Наряду с этим тонкая лента может повреждаться воронами. Обслуживание системы проводится как в дневное, так и в ночное время, поэтому важно организовать работу операторов в несколько смен. Необходимо регулярно осуществлять промывку фильтростанции и постоянно контролировать давление в системе, устранять возможные утечки.

По завершению поливного сезона проводится демонтаж и закладка всех элементов на хранение. При использовании однолетней капельной трубки или ленты, она демонтируется и убирается с поля с дальнейшей утилизацией. Предварительно необходимо извлечь ремонтную фурнитуру, которая применялась в течение сезона для текущего ремонта, с целью дальнейшего использования. Важным экологическим фактором является зачистка поля от остатков капельной ленты и других полимерных отходов. Пластик в почве не разлагается, поэтому у многих фермеров поля, где применялось капельное орошение, загрязнены остатками этой системы. Для нормальной эксплуатации таких почв в будущем, крайне важно очищать поля от пластика любого вида.

Если использовалась многолетняя трубка её необходимо промыть, чтобы удалить все микро и макро частицы, накопившиеся за период эксплуатации. Для этого, на концах трубки открываются заглушки, и потоком воды промывается система до тех пор, пока не пойдет чистая вода. Эта работа проводится по поливным блокам операторами. Если для полива использовалась вода из открытых водоёмов, возникает угроза распространения сине-зеленых и других водорослей и бактерий, которые образуют слизь, забивающую капельницы. Поэтому на таких системах необходимо ввести в поливную воду хлор в концентрации 20 мг/л. Такая промывка производится через инжектор в течение 30-60 минут.

Так как в течение сезона для подкормки растений применяются удобрения, содержащие соли кальция и магния, может произойти блокировка капельниц этими солевыми остатками. Для удаления этих солей в конце сезона применяют техническую азотную, ортофосфорную или хлорную кислоту в концентрации 0,6 % по действующему веществу. Продолжительность кислотной ирригации около одного часа.

Методика проведения кислования оросительной трубки

Первый метод:

— определение количества кислоты по расходу воды и времени кислования;

— подготовка маточного раствора;

— закачка маточного раствора в систему в течение 30 минут;

— промывка системы орошения в течение 30 минут.

Второй метод:

— определение количества воды под заданное количество кислоты;

— определение производительности оросительной трубки в зависимости от рабочего давления;

— определение рабочего давления в трубке для достижения заданной производительности;

— подготовка маточного раствора;

— настройка расчетного давления в системе;

— проведение кислования по первому методу.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *