0

Как сделать линзу

Инструкция

Чтобы построить линзу Френеля самостоятельно нужно иметь существенные представление об оптике. Так, в отличие от обычных линз, френель состоит не из цельного стекла, а из концентрических колец, имеющих в сечении особую форму призмы. Произведите расчеты и определите границы зон Френеля . Они определяются пересечением волнового фронта исходной волны с последовательностью смещенных друг относительно друга на l/2 волновых фронтов «проецируемой волны».

Сделайте прозрачные кольца, которые закроют нечетные зоны Френеля . Их толщина должна соответствовать дополнительному фазовому набегу l/2 . Для удобства воспользуйтесь чертежом.

Для достижения наибольшего эффекта покройте торцы каждой призмы напылением, например, алюминиевым. Сочлените конструкцию, проверив положение призм уравнением.

Различают два вида линз Френеля – кольцевые и поясные. В отличие от кольцевых линз, направляющих световой поток в строго определенном направлении, поясные распространяют свет от источника во все направления. У линзы Френеля сферы применения очень разнообразны: от морских маяков и фотообъективов до специальной пленки, которую накладывают на заднее стекло автомобиля для уменьшения мертвой зоны за машиной при пользовании зеркалом заднего вида.

Одновременно с созданием линзы О.Ж. Френель разработал сложнейшую технологию ее изготовления. В двух словах речь идет об изготовлении линзы, состоящей из набора нескольких призм в виде тонких колец. В современных условиях такое производство возможно лишь с использованием современного высокоточного обрабатывающего, вакуумно-напылительного и контрольно-измерительного оборудования.

При производстве линз Френеля по технологии HOTLENS используется голография, благодаря которой более точно фокусируется инфракрасное излучение и уменьшается попадание, к примеру, видимого света. Такие линзы дают возможность создать более точную зону обнаружения в пространстве. В комплект технологического оборудования по производству линз Френеля входят прецизионные токарные станки, на которых осуществляется торцевание и предварительное закругление заготовок. На сферотокарных станках производится обработка наружной и внутренней поверхностей линз.

Важнейший этап – шлифовка поверхности линзы. Она проводится на полировальных станках. В процессе полировки одновременно удаляются шероховатости и улучшается чистота сферических поверхностей линз. На специальных станках полируются края линз, а для обработки вогнутой и выпуклой поверхностей линз используются особые алмазные резцы. Кроме этого, на подобных предприятиях изготовляется вся необходимая технологическая оснастка.

Линза – это прозрачный прибор, в основном, из специального стекла, предназначенный для увеличения изображения. Линза является основной частью любой оптической системы. Принцип ее действия основан на преломлении световых лучей. Изготовить стеклянную линзу кустарным способом очень сложно, тем более, без необходимого оборудования в этом деле не обойтись. Но, основываясь на эффекте преломления света, можно сделать линзу на основе жидкости.

Вам понадобится

  • Пластиковая бутылка, пластилин, глицерин или вода, шприц с иглой, полиэтиленовый пакет.

Инструкция

Возьмите полуторалитровую пластиковую бутылку. Из верхней части этой бутылки вырежьте два одинаковых, выпуклых круга (для удобства, вырежьте сначала один круг, а затем по его диаметру вырежьте второй).

Затем, возьмите обыкновенный пластилин или какой-либо другой липучий материал. Этим пластилином склейте обе половины линзы так, чтобы с обеих сторон она была выпуклой.

После этого, в двух местах, между половинками линзы проделайте отверстия. В одно из этих отверстий при помощи шприца залейте жидкость (можно залить обыкновенную воду, но лучше использовать жидкость с большим коэффициентом преломления, попробуйте заполнить линзу глицерином, эффект будет лучше), залейте ее до краев и в ней не должно быть воздушных пузырьков. Второе отверстие предназначено для выхода воздуха, чтобы не создавалось давление. После заполнения линзы жидкостью замажьте отверстия.

В экстремальных условиях, например, будучи в тайге зимой, не имея спичек можно изготовить линзу для разведения костра. Для этого, возьмите обыкновенный полиэтиленовый пакет и заполните его водой. Придайте пакету шарообразную форму и дайте воде замерзнуть. После замерзания сорвите пакет и получится линза. Линзу так же можно вырубить из замершего льда.

Хороший свет в автомобиле – важнейший параметр безопасности. Современные технологии развиваются со скоростью космического корабля и решения, используемые еще 5 лет назад, сегодня уже выглядят безнадежно устаревшими. Автопроизводителям обновлять старую продукцию невыгодно, а вот сторонние разработчики эту тему активно поддерживают. Для улучшения конструкции и светового потока предлагается инсталлировать линзу в отражательную конструкцию фары.

Вам понадобится

  • — линзы;
  • — промышленный фен;
  • — набор отверток;
  • — перчатки;
  • — пластик и паяльник

Инструкция

Сначала снимите и полностью разберите фару на вашем автомобиле . При снятии фар руководствуйтесь инструкцией по ремонту. Для разборки фары, прогрейте ее промышленным ближнего.

Линза Френеля – это чуть ли не самый первый, согласно исторической хронологии, прибор, в основу работы которого положен принцип дифракции света. Несмотря на давность этого изобретения, оно и на сегодняшний день не утратило своей актуальности и нашло применение во многих областях.

Что такое Линза Френеля

Ли́нзой Френе́ля называют сложную составную линзу. В отличие от обыкновенных линз, она состоит не из цельного шлифованного куска стекла со сферической поверхностью, а из отдельных концентрических колец. Они плотно примыкают друг к другу и имеют малую толщину. В сечении они представляют собой призмы специального профиля. Свое название эта разновидность линз получила по имени предложившего ее французского физика Огюстена Френеля, работавшего в области физической оптики.

Благодаря своей уникальной конструкции, данная модель линзы имеет малый вес и толщину. Сечения ее колец построены таким образом, что ее сферическая аберрация крайне невелика, в результате чего лучи, ей преломленные, выходят единым параллельным пучком. Диаметр Линзы Френеля варьируется от пары сантиметров и вплоть до нескольких метров.

Линзы Френеля принято подразделять на кольцевые и поясные. Первые направляют пучок света в каком-то одном, заранее заданном, направлении. Вторые же посылают свет от источника по всем направлениям в какой-то одной плоскости.

Применение Линзы Френеля

На сегодняшний день Линза Френеля нашла широкое применение во многих областях.

Например, их используют в больших маяках, проекционных телевизорах, навигационных огнях, железнодорожных линзовых светофорах и семафорных фонарях. А благодаря своему малому весу, Линза Френеля используется также в осветительных устройствах, которые необходимо в процессе эксплуатации передвигать.

А будучи помещенной на заднее стекло автомобиля в виде тонкой пленки, она значительно уменьшает «мертвую» зону позади автомобиля, наблюдаемую в зеркало заднего вида.

На основе Линзы Френеля создана сверхплоская легкая лупа. Именно к ее помощи прибегают люди с пониженным зрением при чтении текстов, набранных мелким шрифтом.

Кроме того, подобные линзы применяются в инфракрасных датчиках движения и в линзовых антеннах.

Есть еще пара перспективных направлений, в которых возможно применение Линзы Френеля. Ее использование предположительно возможно при построении космических телескопов гигантских диаметров.

Также вероятно ее применение в качестве концентратора солнечной энергии для солнечных батарей.

  • О науке просто

Как сделать линзу?

Если в нужный момент у вас под рукой не оказалось линзы, не стоит расстраиваться, так как ее можно сделать своими руками очень быстро. Для этого необходимо изучить рекомендации того, как сделать линзу своими руками.

Линза из льда

Если вы находитесь в холодной местности, а бутылки и подручных материалов нет под рукой, можно сделать простую оптическую линзу с помощью льда. Для этого наберите в пакет воды и поставьте его в холодное место (желательно — в морозильную камеру). По мере застывания придайте линзе приплюснутую форму. После того как вода в пакете превратится в лед, линзой можно будет пользоваться.

Линзы для очков неплохой материал для качественного телескопа. Прежде чем покупать хороший телескоп, можно сделать его самому из недорогих и доступных средств. Если вы или ваш ребенок захотели увлечься астрономическими наблюдениями, то постройка самодельного телескопа поможет изучить и теорию оптических устройств, и практику наблюдений.

Не смотря на то что, построенный телескоп-рефрактор из очковых стекол не покажет вам многого на небе, но приобретенный опыт и знания будут бесценны. После, если вас увлечет телескопостроение, можно построить более совершенный телескоп-рефлектор, например системы Ньютона (см. другие разделы нашего сайта).

Существует три вида оптических телескопов: рефракторы (в качестве объектива система линз), рефлекторы (объектив — зеркало), и катадиоптрические (зеркально-линзовые). Все современные самые большие телескопы — рефлекторы, их преимущество в отсутствии хроматизма и возможных больших размерах объектива, ведь чем больше диаметр объектива (его апертура), тем выше его разрешающая способность, и больше собирается света, а следовательно тем более слабые астрономические объекты видны в телескоп, тем выше их контрастность, и тем большие можно применить увеличения.

Рефракторы применяются там, где необходима высокая точность и контрастность или в небольших телескопах. А сейчас про самый простой рефрактор, с увеличением до 50 раз, в который вы сможете увидеть: крупнейшие кратеры и горы Луны, Сатурн с его кольцами (как шарик с кольцом, а не «пельмень»!), яркие спутники и диск Юпитера, некоторые звёзды невидимые невооруженным глазом.

Любой телескоп состоит из объектива и окуляра, объектив строит увеличенное изображение объекта, которое рассматривается, затем через окуляр. Расстояние между объективом и окуляром равно сумме их фокусных расстояний (F), а увеличение телескопа равно Fоб./Fок. В моём случае оно составляет примерно 1000/23=43 раз, т. е. 1,72D при диафрагме 25 мм.

1 — окуляр; 2 — основная труба; 3 — фокусировочная труба; 4 — диафрагма; 5 — скотч, которым крепится линза к третей трубе, которую можно легко извлекать, например для замены диафрагмы; 6 — линза.

В качестве объектива возьмём заготовку линзы для очков (можно купить в любой «Оптике») с силой 1 диоптрия, что соответствует фокусному расстоянию 1 м. Окуляр — я использовал ту же ахроматическую просветлённую склейку, что и для микроскопа, считаю для такого простого устройства — это неплохой вариант. В качестве корпуса я использовал три трубы из плотной бумаги, первая около метра, вторая ~20 см. Короткая вставляется в длинную.

Линза — объектив крепится к третей трубе выпуклой стороной к наружу, сразу за ней устанавливается диск — диафрагма с отверстием по центру диаметром 25-30 мм — это необходимо, т. к. одиночная линза, да ещё и мениск, очень плохой объектив и для получения сносного качества приходится жертвовать её диаметром. Окуляр — в первой трубе. Фокусировка производится изменением расстояния между объективом и окуляром, вдвигая или выдвигая вторую трубу, фокусировать удобно по Луне. Объектив и окуляр должны быть параллельны друг другу и их центры должны находиться строго на одной линии, диаметр трубы можно взять например на 10 мм больше диаметра отверстия диафрагмы. В общем, при изготовлении корпуса, каждый волен поступать как хочет.

Несколько замечаний:
— не устанавливайте ещё одну линзу после первой в объективе, как советуют на некоторых сайтах — это принесёт только светопотери и ухудшение качества;
— не устанавливайте также диафрагму глубоко в трубе — в этом нет необходимости;
— стоит поэкспериментировать с диаметром отверстия диафрагмы и подобрать оптимальный;
— можно также взять линзу на 0,5 диоптрии (фокусное расстояние 2 м) — это позволит увеличить отверстие диафрагмы и повысить увеличение, но длина трубы станет равной 2 метра, что может быть неудобно.
Для объектива подойдет одиночная линза, фокусное расстояние которой равно F=0.5-1 м (1-2 диоптрии). Достать ее несложно; она продается в магазине оптики, где есть линзы для очков. Такая линза имеет целый букет аберраций: хроматизм, сферическая аберрация. Уменьшить их влияние можно, применив диафрагмирование объектива, то есть уменьшить входное отверстие до 20 мм. Как проще это сделать? Вырезаете из картона колечко, равное диаметру трубы и внутри прорезаете то самое входное отверстие (20 мм), а затем ставите его перед объективом почти вплотную к линзе.

Можно даже из двух линз собрать объектив, в котором частично будет исправлена хроматическая аберрация, появляющаяся в результате дисперсии света. Чтобы ее устранить, берете 2 линзы разной формы и материала – собирательную и рассеивающую – с разным коэффициентом дисперсии. Простой вариант: купить 2 очковые линзы из поликарбоната и стекла. В стеклянной линзе коэффициент дисперсии будет 58-59, а в поликарбонате – 32-42. соотношение примерно 2:3, тогда и фокусные расстояния линз берем с этим же соотношением, допустим +3 и -2 диоптрии. Складываем эти значения, получим объектив с фокусным расстоянием +1 диоптрия. Линзы складываем вплотную; собирательная должна быть первой к объективу. Если одиночная линза, то она должна быть выпуклой стороной к объекту.

Как сделать телескоп без окуляра?! Окуляр – это вторая важная деталь телескопа, без нее мы никуда. Его делают из лупы с расстоянием фокуса 4 см. Хотя для окуляра лучше использовать 2 плосковыпуклые линзы (окуляр Рамсдена), установив их на расстоянии 0.7f. Идеальный вариант – достать окуляр от готовых приборов (микроскоп, бинокль). Как определить размер увеличения телескопа? Делите фокусное расстояние объектива (например, F=100см) на фокусное расстояние окуляра (например, f=5см), получаете 20 крат – увеличение телескопа.

Затем нам нужны 2 трубки. В одну вставим объектив, в другую – окуляр; далее первую трубку вставляем во вторую. Какие трубки использовать? Их можно сделать самим. Берете лист ватмана или обоев, но обязательно плотный лист. Сворачиваете трубку по диаметру объектива. Затем другой лист плотной бумаги сворачиваете, и помещаете в нее окуляр (!)плотно. Потом эти трубки плотно вводите одна в другую. Если появился зазор, то внутреннюю трубку оборачиваете в несколько слоев бумаги, пока зазор не исчезнет.

Вот ваш телескоп готов. А как сделать телескоп для астрономических наблюдений? Вы просто зачерняете внутреннюю полость каждой трубы. Раз мы делаем телескоп первый раз, то способ зачернения возьмем простой. Всего лишь покрасьте черной краской внутреннюю полость труб. Эффект от первого созданного самостоятельно телескопа будет ошеломляющим. Удивите родных своими конструкторскими способностями!
Часто геометрический центр линзы не совпадает с оптическим, поэтому если есть возможность обточить линзу у мастера не пренебрегайте ею. Но в любом случае подойдет и необточенная заготовка очковой линзы. Диаметр линзы — объектива большого значения для нашего телескопа не имеет. Т.к. очковые линзы сильно подвержены различным обберациям, особенно края линзы, то мы будем диафрагментировать линзу диафрагмой диаметром около 30 мм. Но для наблюдения разных объектов на небе, диаметр диафрагмы подбирается эмпирически и может варьироваться от 10 мм до 30мм.

Следующее, что нужно рассмотреть, это процессы производства контактных линз . В современном мире, существует три основных метода по изготовлению данных незамысловатых приспособлений.

Наиболее старым, из применяемых ныне методом, является центробежное формирование. В крутящуюся на высоких оборотах форму, впрыскивается жидкий полимер, где мгновенно подвергается ультрафиолетовому излучению и высокой температуры, в результате чего происходит достаточно быстрое отвердевание материала.
Далее, подготовленная контактная линза, извлекается из формы, подвергается насыщению водой, этот этап также называют гидратацией. После полируется, тонируется и тщательным образом, проходит химическое очищение.

Также существует, такой способ изготовления линз , как точение – его применяют при изготовлении мягких и твердых, чаще называемых жесткими, контактных линз. Для этого используют заготовки из заранее полимеризованного вещества, после чего они обрабатываются на токарном аппарате. Затем эти линзы, тщательно полируются, насыщаются водой, проходят химическую очистку ото всех посторонних примесей, производят тонирование. Завершающим этапом процесса, является стерилизация, где линзу нагревают до 121°-124° С. После чего контактные линзы следует упаковать и нанести маркировку.

Еще один популярный метод производства контактных линз – это литье. Он менее трудоемкий, из вышеперечисленных способов. Всё, что потребуется, металлическая форма-матрица, следует учесть, что для каждого вида линз, с определенными параметрами – она индивидуальна. По этой матрице отливаются тысячи пластиковых копий. Нижнюю часть каждой формы, заливает жидкий полимер, сверху вставляют верхнюю часть формы, это выступает своеобразным прессом. В промежутке между двумя половинами формы, и получается наша линза. Далее контактная линза подвергается насыщению водой, после этого, полированию, очищению, тонировке, стерилизации, упаковке, как и во всех рассмотренных ранее случаях.

Следует отметить, что существуют и комбинированные технологии изготовления, которые нередко используют в производстве линз. Наиболее распространенным примером комбинированного метода, можно назвать Реверсивный процесс III. Его суть основана на том, что заднюю часть линзы образовывают токарной обработкой, а переднюю, получают методом центробежного формования.

Подобных техник, существует не мало. Каждый производитель ориентируется на экономичность, быстроту и удобство изготовления, и в праве выбирать любую из перечисленных технологий, внося свои тонкости и пожелания, изобретая новые и новые методы. Прогресс не стоит на месте, мы можем быть абсолютно уверенны, что уже в ближайшие сроки, производство контактных линз выйдет на новый уровень, делая наше зрение идеальным, взгляд естественным и прекрасным, а нас – успешнее и увереннее в себе.

Линза Френеля

Не следует путать с зонной пластинкой Френеля. Поперечное сечение
(1) линзы Френеля и
(2) обычной линзы. Создание параллельного пучка света линзой Френеля (находится в центре).

Ли́нза Френе́ля — сложная составная линза. Состоит не из цельного шлифованного куска стекла со сферической или иными поверхностями (как обычные линзы), а из отдельных примыкающих друг к другу концентрических колец небольшой толщины, которые в сечении имеют форму призм специального профиля. Предложена Огюстеном Френелем.

Эта конструкция обеспечивает малую толщину (а следовательно, и вес) линзе Френеля даже при большой угловой апертуре. Сечения колец у линзы строятся таким образом, что сферическая аберрация линзы Френеля невелика, лучи от точечного источника, помещённого в фокусе линзы, после преломления в кольцах выходят практически параллельным пучком (в кольцевых линзах Френеля).

Линзы Френеля бывают кольцевыми и поясными. Кольцевые направляют световой поток в каком-либо одном направлении. Поясные линзы посылают свет от источника по всем направлениям в определённой плоскости.

Диаметр линзы Френеля может составлять от единиц сантиметров до нескольких метров.

Применение

Основным недостатком линзы Френеля является то, что из-за наличия переходных краевых участков между зонами велик уровень паразитной засветки и разного рода «ложных изображений» (по сравнению с обычными линзами и традиционными объективами). Поэтому её использование для построения оптически точных изображений затруднено.

  • Тем не менее, уже есть положительный опыт построения и таких оптических систем. Перспективным направлением может быть построение космических телескопов диаметром в десятки и сотни метров, с использованием линз Френеля на основе тонких мембран.
  • Массово применяется в осветительных устройствах, особенно подвижных, для минимизации веса и затрат на перемещение.
  • Помещая линзу Френеля вблизи фокальной плоскости объектива и окуляра оптической системы (в зеркальных фотоаппаратах), конструкторы достигают максимальной равномерности освещённости изображения на матовом стекле видоискателя. При этом кольцевая структура линзы маскируется матовым стеклом, а паразитное рассеивание не оказывает влияния на изображение.
  • Линзы Френеля применяются в крупногабаритных фокусирующих системах морских маяков, в проекционных телевизорах, оверхед-проекторах (кодоскопах), Линзы Френеля в маяке фотовспышках, светофорах, железнодорожных семафорных фонарях и фонарях пассажирских вагонов.
  • Сверхплоская лёгкая лупа — тонкий лист пластика, отлитый в форме линзы Френеля, оказывается удобным увеличительным стеклом для людей с пониженным зрением, вынужденных читать текст, напечатанный мелким шрифтом. Благодаря малой толщине, такая лупа используется как закладка и линейка. Увеличивающая линза Френеля в виде плоского пластикового экрана.
  • Акустические линзы Френеля (в действительности — не линзы, а акустические зонные пластинки Френеля ) применяют при формирования звукового поля в акустике. Изготавливают из звукопоглощающих материалов.
  • Пластиковая плёнка в виде линзы Френеля, наклеенная на заднее стекло автомобиля, уменьшает мёртвую (невидимую) зону позади автомобиля при взгляде через зеркало заднего вида.
  • Перспективным в настоящее время считается использование линз Френеля в качестве концентратора солнечной энергии для солнечных батарей.
  • Линзы Френеля применяются в инфракрасных (пирометрических) датчиках движения охранных сигнализаций.

Примечания

Для улучшения этой статьи желательно?:

  • Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.

ЛИСТАТЬ ОБРАТНО

Зоны Френеля.

Определить понятие зоны Френеля можно для дифракции на отверстии любой формы и даже вообще без отверстия, но практически полезно рассмотрение зон Френеля только при дифракции на круглом отверстии, причем в случае, когда источник света и точка наблюдения находятся на прямой, перпендикулярной к плоскости экрана с отверстием и проходящей через центр отверстия.

Именно такой случай изображен на рис. 36. Здесь — точечный источник света, — точка наблюдения. На зоны Френеля можно мысленно разбить любую поверхность, через которую проходит свет, например, поверхность равной фазы. Но в нашем случае удобнее разбить на зоны Френеля плоскую поверхность отверстия.

Задача имеет ось симметрии, поэтому зоны Френеля имеют вид колец. Задача сводится к определению радиуса зоны Френеля с произвольным номером . Под радиусом зоны Френеля подразумевают больший радиус кольца.

Сделаем дополнительное построение (рис. 36). Соединим произвольную точку в плоскости отверстия отрезками прямых линий с источником света и с точкой наблюдения . Световая волна, которая приходит в точку наблюдения по пути , проходит больший путь, чем волна, прошедшая по пути . Разность хода определяет разность фаз волн, пришедших от вторичных источников и в точку наблюдения . От разности фаз зависит результат интерференции волн в точке и, следовательно, интенсивность света в этой точке.

Если разность хода равна , то свет приходит в точку наблюдения в противофазе. Следовательно, при разности хода меньше свет приходит более или менее в одинаковой фазе.

Это условие по определению является условием того, что точка находится в первой зоне Френеля. Тогда для границы первой зоны разность хода .

Это равенство позволяет найти радиус первой зоны, будем обозначать его . Он равен длине отрезка при разности хода .

Если оба расстояния и гораздо больше диаметра отверстия, а обычно рассматривают именно такой случай, то из геометрических соображений (рис. 36) можно получить

.

Аналогично, условие для внешней границы зоны Френеля с номером : . Откуда радиус -ой зоны Френеля

.

Отметим, что разбиение на зоны Френеля — это разбиение вторичного источника света на источники с одинаковой площадью, так как

.

От соседних зон Френеля свет приходит в противоположных фазах, так как разность хода от соседних зон по определению равна . Этот результат можно обобщить. Разбиение отверстия на кольца такие, что свет от соседних колец приходит в точку наблюдения с фиксированной разностью фаз, означает разбиение на кольца одинаковой площади. Можете доказать это в качестве задачи.

Рассмотрим теперь разбиение площади отверстия на гораздо более тонкие кольца равной площади. Эти кольца — вторичные источники света. Амплитуда света, пришедшего от каждого кольца в точку наблюдения примерно одинакова. Разность фаз света от соседних колец в точке тоже одинакова. Тогда комплексные амплитуды в точке наблюдения при сложении на комплексной плоскости образуют дугу окружности. Суммарная амплитуда — хорда.

Картина построения на комплексной плоскости совершенно аналогична картине для дифракции Фраунгофера на одной щели.

Рассмотрим теперь, как изменяется картина сложения комплексных амплитуд при изменении радиуса отверстия и сохранении остальных параметров задачи.

Если отверстие открывает для точки наблюдения одну зону Френеля, то картина сложения амплитуд выглядит так, как изображено на рис. 37. Амплитуда от последнего тонкого кольца, повернута на угол относительно амплитуды от центральной части отверстия, так как соответствующая разность хода по определению первой зоны Френеля равна . Этот угол означает, что амплитуды образуют половину окружности.

Если отверстие открывает две зоны Френеля, то картина сложения амплитуд будет иметь вид окружности. В этом случае суммарная амплитуда света в точке равна нулю (нулевая длина хорды).

Если открыто три зоны Френеля, то картина представляет собой полторы окружности, и так далее.

Для четного числа зон Френеля амплитуда в точке наблюдения равна нулю. Для нечетного числа амплитуда одинаковая, максимальная и равна длине диаметра окружности на комплексной плоскости сложения амплитуд.

Иногда в условии задачи говорится, что открыто какое-либо дробное число зон Френеля. При этом под половиной зоны Френеля понимают четверть окружности картины сложения амплитуд, что соответствует половине площади, а не радиуса, первой зоны Френеля. Аналогично для любого другого дробного числа зон Френеля. Для половины зоны Френеля, как видно из рис. 38, амплитуда поля в корень из двух раз меньше, чем для одной зоны Френеля.

Иногда в задачах говорится, что какое-то (дробное) число зон закрыто, затем сколько-то зон открыто и остальные закрыты. Тогда суммарную амплитуду поля можно найти, как векторную разность амплитуд двух задач.

Если открыты все зоны Френеля (нет препятствия на пути световой волны), то картина сложения амплитуд будет выглядеть как спираль, что очень грубо изображено на рис. 39. Спираль получается, потому что при большом числе открытых зон следует учитывать зависимость амплитуды света излученного вторичным источником от расстояния до точки наблюдения и от направления излучения вторичного источника. В результате, свет от зон с большим номером будет иметь малую амплитуду.

Центр спирали находится в середине окружности из первых двух зон, поэтому амплитуда поля при всех открытых зонах вдвое меньше, чем амплитуда поля при открытой одной первой зоне, а интенсивности различаются в четыре раза. Интенсивность света при открытой первой зоне Френеля в четыре раза больше интенсивности света перед экраном с отверстием.

В задачах на зоны Френеля обычно задана интенсивность света до экрана, в котором какие-то зоны Френеля открыты, какие-то — закрыты, и требуется найти интенсивность в точке наблюдения. Интенсивность — это квадрат амплитуды (с коэффициентом ). И заданная интенсивность света до экрана равна квадрату радиуса окружности на комплексной плоскости. Так если требуется найти отношение интенсивности света при открытой первой зоне к интенсивности падающей волны, то это отношение равно квадрату отношения диаметра окружности к ее радиусу.

В некоторых задачах рассматривается дифракция на небольшом непрозрачном экране, который закрывает для точки наблюдения небольшое число зон Френеля. Полезно сравнить эту задачу с дополнительной задачей, в которой эти зоны, наоборот, открыты, а все остальные — закрыты. Амплитуду поля в первой задаче можно найти, как векторную разность амплитуды исходной волны и амплитуды во второй задаче.

Дифракция Фраунгофера.

Дифракция Фраунгофера — это дифракция на отверстии, которое для точки наблюдения открывает заметно меньше одной зоны Френеля. Это условие выполнено, если точка наблюдения и источник света находятся достаточно далеко от отверстия.

Дифракция Френеля.

Дифракция Френеля — это дифракция в случае, когда отверстие открывает (или препятствие закрывает) для точки наблюдения несколько зон Френеля. Если открыто много зон Френеля, то дифракцией можно пренебречь, и мы оказываемся в приближении геометрической оптики.

Сравнение линзы и зонной пластинки.

Если закрыть все четные, или все нечетные, зоны Френеля, то в точке наблюдения будет свет с большой амплитудой. Действительно, каждая зона дает пол окружности на плоскости сложения комплексных амплитуд. Если оставить открытыми только нечетные зоны, то от общей спирали сложения амплитуд (рис. 39) останутся только половинки окружностей (рис. 40), дающие вклад «снизу вверх» в суммарную амплитуду поля.

Препятствие на пути световой волны, в котором открыты только четные или только нечетные зоны Френеля, называется зонной пластинкой. Интенсивность света в точке наблюдения за зонной пластинкой многократно превышает интенсивность света, падающего на зонную пластинку. Причина этого в том, что свет от каждой открытой зоны Френеля приходит в точку наблюдения в одной и той же фазе. Ситуация похожа на фокусировку света линзой.

Линза в отличии от зонной пластинки никакие зоны Френеля не закрывает, она сдвигает по фазе на свет от тех зон, которые закрывает зонная пластинка. За счет этого амплитуда света удваивается. Кроме того линза устраняет взаимные фазовые сдвиги световых волн, проходящих внутри одной зоны Френеля. Она разворачивает пол окружности на комплексной плоскости для каждой зоны Френеля в отрезок прямой линии. За счет этого амплитуда возрастает еще в раз. В результате всю спираль сложения комплексных амплитуд на комплексной плоскости линза разворачивает в прямую линию.

Как линза выравнивает фазы дифрагированных волн? Линза выравнивает оптическую длину пути различных лучей, от источника до изображения. Это, в свою очередь, возможно потому, что оптическая длина пути в стекле в раз больше геометрической длины.

Получение изображения точечного источника с помощью линзы можно рассматривать или по правилам геометрической оптики, или как результат дифракции и интерференции волн, проходящих через различные участки линзы. В последнем случае большая интенсивность света в точке изображения получается, как результат интерференции волн, прошедших через разные участки линзы и пришедших в точку изображения в одинаковой фазе. В другие точки за линзой свет приходит через различные участки линзы в различных фазах, поэтому интенсивность света в других точках намного меньше, чем в точке изображения.

Дифракционный предел разрешения.

В малой окрестности точки изображения интенсивность должна оставаться большой, так как разность хода и разность фаз при изменении точки наблюдения меняются непрерывно, а не скачком. Это приводит к тому, что на экране изображение точечного источника света не точка, а маленький светлый кружок. На границах кружка расфазировка дифрагированных волн становится порядка . Размер этого кружка можно формально найти если представить себе, что линза, как дырка в экране, приводит к дифракции на круглом отверстии. При дифракции плоской волны на круглом отверстии основная часть света идет в угол порядка , где — диаметр линзы. Угловой радиус первого темного кольца равен . Оказывается, что эта дифракционная расходимость не может быть скомпенсирована преломлением по законам геометрической оптики ни на какой сложной поверхности линзы. Поэтому плоская волна, например, собирается за линзой не в одну точку, а в кружок с радиусом , где — фокусное расстояние линзы.

Если сопряженная источнику света плоскость не совпадает с фокальной плоскостью линзы и находится на расстоянии , то дифракционный радиус кружка изображения точечного источника можно найти по формуле

.

Это основная формула, используемая при решении задач по теме «Дифракционный предел разрешения». Так предел углового разрешения телескопа, связан с тем, что изображение далекой звезды в фокальной плоскости линзы представляет собой кружок, а не точку. Принято считать (критерий Рэлея), что две звезды будут видны, как две, если центр кружка изображения одной звезды совпадает с первым темным кольцом дифракционного изображения второй звезды. В качестве задачи можете доказать, что это выполняется при угловом расстоянии между звездами, равном . Это и есть предел углового разрешения телескопа.

Аналогично примерно величине равен предел углового разрешения глаза и микроскопа. Для микроскопа обычно вместо углового разрешения рассматривают линейное разрешение — наименьшее расстояние между двумя «деталями» предмета, при котором микроскоп позволяет определить, что «детали» две, а не одна. Каждая мелкая «деталь» на экране вместо точки дает дифракционный кружок изображения. Если этот кружок по законам геометрической оптики отобразить на предмет, то его размер и будет примерно равен разрешению микроскопа . Предмет в микроскопе находится примерно на фокусном расстоянии от объектива, угловое дифракционное разрешение которого . Следовательно

,

где — входная апертура объектива.

Если между предметом и объективом среда с показателем преломления , то длина волны в среде в раз меньше, поэтому

,

Более строгая теория для некогерентного освещения объекта дает выражение

.

Величину называют числовой апертурой.

Явление дифракции также ограничивает спектральное разрешение спектрометра. Вспомните нормальную ширину щели.

Во всех случаях явление дифракции ограничивает угловое разрешение прибора величиной порядка , где — ширина пучка лучей.

VII. ЗАКЛЮЧЕНИЕ.

В заключении сделаем несколько замечаний о полезности применения соображений размерности.

Многие соотношения в оптике, как и вообще в физике, могут быть получены путем построения простейшей зависимости требуемых величин с учетом необходимой размерности результата.

Всевозможные малые углы можно выразить как отношение двух длин, одна из которых — длина волны , если угол от нее зависит. Так угол дифракции равен , где — размер препятствия; максимальная апертура интерференции — , где — размер источника света; угловой размер источника света — , где — длина пространственной когерентности; угол, под которым интерферирующие лучи сходятся на экране — , где — ширина полос интерференции.

Дифракционная решетка имеет три характерных линейных размера: — ширина прозрачной части штриха, — шаг решетки, — полная ширина решетки. Им соответствуют три характерных угла: — направление нулевой интенсивности дифракции на одной щели; — угол между главными максимумами дифракции; — угловая ширина главного максимума.

Частота и время — величины обратные. Обратная частота — это период колебаний ; единица деленная на спектральную ширину — время когерентности ; если излучение состоит из двух близких частот, то — период биений.

Если в зависимости сигнала от времени есть особенность с характерным временем , то в спектре сигнала есть особенность размером . Если свет встречает особенность с характерным линейным размером , то в распределении света по углам появляется особенность размером . И вообще, распределение света по углам — Фурье образ препятствия.

Подробнее смотрите литературу .

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *